{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Correlation, regression, and prediction\n", "\n", "*If you run into errors, check the [common errors](https://docs.google.com/document/d/1-LUvfYYI5UtjYiZerCGIBNgzkaJHNxl4530tgh37uYs/edit?usp=sharing) Google doc first.*\n", "\n", "One of the most important and interesting aspects of data science is making predictions about the future. How can we learn about temperatures a few decades from now by analyzing historical data about climate change and pollution? Based on a person's social media profile, what conclusions can we draw about their interests? How can we use a patient's medical history to judge how well he or she will respond to a treatment?\n", "\n", "Run the cell below to import the code we'll use in this notebook.\n", "Don't worry about getting an output, simply run the cell." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from datascience import *\n", "import numpy as np\n", "import matplotlib.pyplot as plots\n", "import scipy as sp\n", "%matplotlib inline\n", "import statsmodels.formula.api as smf\n", "plots.style.use('fivethirtyeight')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this module, you will look at two **correlated** phenomena and predict unseen data points!\n", "\n", "We will be using data from the online data archive of Prof. Larry Winner of the University of Florida. The file *hybrid* contains data on hybrid passenger cars sold in the United States from 1997 to 2013. In order to analyze the data, we must first **import** it to our Jupyter notebook and **create a table.**" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/datascience/tables.py:132: FutureWarning: read_table is deprecated, use read_csv instead.\n", " df = pandas.read_table(filepath_or_buffer, *args, **vargs)\n" ] }, { "data": { "text/html": [ "
vehicle | year | msrp | acceleration | mpg | class | \n", "
---|---|---|---|---|---|
Prius (1st Gen) | 1997 | 24509.7 | 7.46 | 41.26 | Compact | \n", "
Tino | 2000 | 35355 | 8.2 | 54.1 | Compact | \n", "
Prius (2nd Gen) | 2000 | 26832.2 | 7.97 | 45.23 | Compact | \n", "
Insight | 2000 | 18936.4 | 9.52 | 53 | Two Seater | \n", "
Civic (1st Gen) | 2001 | 25833.4 | 7.04 | 47.04 | Compact | \n", "
... (148 rows omitted)
" ], "text/plain": [ "FIPS | tyoung | told | D_biep_Young_Good_all | \n", "
---|---|---|---|
10001 | 7.13782 | 7.17363 | 0.462662 | \n", "
10003 | 7.07723 | 6.88274 | 0.439701 | \n", "
10005 | 6.84831 | 6.96089 | 0.445957 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | \n", "
1003 | 7.17904 | 7.04148 | 0.457369 | \n", "
... (3133 rows omitted)
" ], "text/plain": [ "State | FIPS | County | Year | Heart_Attack_Mortality | Stability | \n", "
---|---|---|---|---|---|
Alabama | 1001 | Autauga | 2000 | 220.8 | 1 | \n", "
Alabama | 1001 | Autauga | 2001 | 100.7 | 1 | \n", "
Alabama | 1001 | Autauga | 2002 | 68.2 | 1 | \n", "
Alabama | 1001 | Autauga | 2003 | 66.7 | 1 | \n", "
Alabama | 1001 | Autauga | 2005 | 63.2 | 1 | \n", "
... (34780 rows omitted)
" ], "text/plain": [ "FIPS | tyoung | told | D_biep_Young_Good_all | State | County | Year | Heart_Attack_Mortality | Stability | \n", "
---|---|---|---|---|---|---|---|---|
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2000 | 220.8 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2001 | 100.7 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2002 | 68.2 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2003 | 66.7 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2005 | 63.2 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2006 | 68.3 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2007 | 73.9 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2008 | 104.7 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2009 | 60 | 1 | \n", "
1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2010 | 93.2 | 1 | \n", "
... (34706 rows omitted)
" ], "text/plain": [ "FIPS | tyoung | told | D_biep_Young_Good_all | State | County | Year | Heart_Attack_Mortality | Stability\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2000 | 220.8 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2001 | 100.7 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2002 | 68.2 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2003 | 66.7 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2005 | 63.2 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2006 | 68.3 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2007 | 73.9 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2008 | 104.7 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2009 | 60 | 1\n", "1001 | 7.05085 | 6.79661 | 0.502814 | Alabama | Autauga | 2010 | 93.2 | 1\n", "... (34706 rows omitted)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "joined_data = age.join(\"FIPS\", heart)\n", "joined_data = joined_data.to_df().drop_duplicates()\n", "joined_data = Table.from_df(joined_data)\n", "joined_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That's great! By displaying the table, we can get a general idea as to what columns exist, and what kind of relations we can try to analyze. \n", "\n", "One thing to notice is that there are a lot of data points! Our visualization and regression may be cleaner if we subset the data. Let's use the functions from the first notebook to subset the data to California data from 2010." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "FIPS | tyoung | told | D_biep_Young_Good_all | State | County | Year | Heart_Attack_Mortality | Stability | \n", "
---|---|---|---|---|---|---|---|---|
6001 | 6.96069 | 6.78826 | 0.423026 | California | Alameda | 2010 | 45.8 | 1 | \n", "
6005 | 6.575 | 6.85 | 0.446357 | California | Amador | 2010 | 78.6 | 1 | \n", "
6007 | 7.11892 | 7.04696 | 0.442157 | California | Butte | 2010 | 62.7 | 1 | \n", "
6009 | 7.65079 | 7.8254 | 0.460807 | California | Calaveras | 2010 | 99.5 | 1 | \n", "
6013 | 6.96188 | 6.87655 | 0.418506 | California | Contra Costa | 2010 | 48.9 | 1 | \n", "
6015 | 7 | 6.83871 | 0.43266 | California | Del Norte | 2010 | 75.8 | 1 | \n", "
6017 | 6.84016 | 6.85714 | 0.408486 | California | El Dorado | 2010 | 53.9 | 1 | \n", "
6019 | 7.0461 | 7.09315 | 0.424963 | California | Fresno | 2010 | 80.4 | 1 | \n", "
6021 | 6.6 | 7.2 | 0.260103 | California | Glenn | 2010 | 91.7 | 1 | \n", "
6023 | 6.86624 | 6.79618 | 0.433324 | California | Humboldt | 2010 | 94.4 | 1 | \n", "
... (39 rows omitted)
" ], "text/plain": [ "FIPS | tyoung | told | D_biep_Young_Good_all | State | County | Year | Heart_Attack_Mortality | Stability\n", "6001 | 6.96069 | 6.78826 | 0.423026 | California | Alameda | 2010 | 45.8 | 1\n", "6005 | 6.575 | 6.85 | 0.446357 | California | Amador | 2010 | 78.6 | 1\n", "6007 | 7.11892 | 7.04696 | 0.442157 | California | Butte | 2010 | 62.7 | 1\n", "6009 | 7.65079 | 7.8254 | 0.460807 | California | Calaveras | 2010 | 99.5 | 1\n", "6013 | 6.96188 | 6.87655 | 0.418506 | California | Contra Costa | 2010 | 48.9 | 1\n", "6015 | 7 | 6.83871 | 0.43266 | California | Del Norte | 2010 | 75.8 | 1\n", "6017 | 6.84016 | 6.85714 | 0.408486 | California | El Dorado | 2010 | 53.9 | 1\n", "6019 | 7.0461 | 7.09315 | 0.424963 | California | Fresno | 2010 | 80.4 | 1\n", "6021 | 6.6 | 7.2 | 0.260103 | California | Glenn | 2010 | 91.7 | 1\n", "6023 | 6.86624 | 6.79618 | 0.433324 | California | Humboldt | 2010 | 94.4 | 1\n", "... (39 rows omitted)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "joined_data = joined_data.where(\"Year\", are.equal_to(2010))\n", "joined_data = joined_data.where(\"State\", are.equal_to(\"California\"))\n", "joined_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now have a lot less points, which will hopefully make the visualization a bit cleaner.\n", "\n", "Let's make a simple scatter plot with a fit line to look at the relation between the category `D_biep_Young_Good_all` and `Heart_Attack_Mortality`. Remember, all these functions are either on Notebook 1 or Notebook 2!" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAFXCAYAAABKu048AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdYk9fbwPFvmC4U2U5wUBfWgajVOsCBiIrWCaite7XV2mq1to66R9VaEa2j6q+4F66qVXBv697WuqoMBZwgAnn/8DUtZQYSEpL7c11eV8lzktw3D71zcp7znKOIi4tTIoQQwqiY6DoAIYQQeU+KvxBCGCEp/kIIYYSk+AshhBGS4i+EEEZIir8QQhghKf5CCGGEpPj/x82bN3UdQp4xllyNJU+QXA2RtvKU4i+EEEZIir8QQhghKf5CCGGEpPgLIYQRkuIvhBBGSIq/EEIYISn+QghhhKT4CyGEEZLiL4QQRshM1wEIkZXIx7FMCVpDzNPn2BSzYswQfxzsrHUdlhD5mvT8hd6bErSGh1ExJCYm8TAqhikLVus6JCHyPSn+Qu/FPH2OiUIBgIlCwZO45zqOSIj8T4q/0Hs2xaxIUSoBSFEqsSlmpeOIhMj/pPgLvTdmiD+lHG2wsDCjpIMNY4b46zokIfI9ueAr9J6DnTVzxw7SdRhCGBTp+QshhBGS4i+EEEZIir8QQhghKf5CCGGEpPgLIYQRkuIvhBBGSIq/EEIYISn+QghhhKT4CyGEEZLiL4QQRkiWdxBCg2TvAZFfSM9fCA2SvQcMU+TjWIZOCKbH8BkMnRBM1OM4XYeUa1L8hdAg2XvAMBnih7oUfyE0SPYeMEyG+KEuxV8IDZK9BwyTIX6oywVfITRI9h4wTGOG+DNlwWqexP1zIT+/k+IvhBBZMMQPdRn2EUIIIyTFXwghjJAUfyGEMEJS/IUQwghJ8RdCCCMkxV8IIYyQFH8hhDBCUvyFEMIISfEXQggjJMVfCCGMkBR/IYQwQlL8hRDCCEnxF0IIIyTFXwghjJAUfyGEMEKynr8QgsjHsUwJWkPM0382K3Gws9Z1WEKLpOcvhDDIDcr1SeTjWIZOCKbH8BkMnRBM1OM4XYckxV8IYZgblOsTffxwleIvhDDIDcr1iT5+uErxF0IwZog/pRxtsLAwo6SDjUFsUK5P9PHDVSfF/8iRI3Tr1o0qVapgbW1NSEhIquNKpZKpU6dSuXJlnJyc8PX15erVq6naxMXF0b9/f8qWLUvZsmXp378/cXG6H0cTIj96t0H5/2aP5Mdxg+Rir4bp44erTmb7vHz5kqpVq+Lv78/AgQPTHP/xxx8JCgoiKCgIV1dXZsyYQYcOHTh16hRWVm8/Mfv27cuDBw/YsGEDAJ9//jkDBgxg7dq1eZqLEEJk5d2Hqz7RSfFv2bIlLVu2BGDw4MGpjimVSoKDgxk2bBh+fn4ABAcH4+rqyoYNG+jVqxfXr19n79697Nq1i7p16wIwZ84cfHx8uHnzJq6urnmbkBBC5DNqDfvcunVLW3Go3L17l8jISLy8vFSPFSxYkAYNGnDixAkATp48SZEiRahXr56qTf369SlcuLCqjRBCgH5Os9QHavX8PTw8aNSoEb1796ZNmzaYmWn+i0NkZCQA9vb2qR63t7fn0aNHAERFRWFra4vi/6+eAygUCuzs7IiKisrwtW/evJmtGLLbzhAYS67GkidIrv81OXgj0THPUCgUxMTE8fWUhXwzqGMeRKc5meWZ05EOtar3/PnzWbFiBb169cLe3p7u3bvTs2dPXFxccvTmeS07vyRjGjYyllyNJU+QXNOTjAlFihRR/ZyESb76HWnrnKo17BMYGMiePXs4dOgQ7dq1Y8mSJbi7u9OxY0d27NhBSkpKrgNydHQEIDo6OtXj0dHRODg4AODg4MCTJ09Q/v/UKXh7reDx48eqNkIIAfo5zVIf5Giqp5ubG7NmzeLatWvMmTOHqKgoevTogZubG1OnTs106CUrzs7OODo6Eh4ernosISGBY8eOqcb469aty4sXLzh58qSqzcmTJ3n58mWq6wBCCKGP0yz1Qa4G7e/du8fly5e5d+8eFhYWVKlShQULFhAUFERwcDBt27ZN93kvXrzg9u3bAKSkpPDgwQMuXLhA8eLFKVOmDIMGDWL27Nm4urpSsWJFZs2aReHChenUqRMAlSpVonnz5nzxxRfMnTsXgC+++AJvb+989XVOCKF9+jjNUh+o3fNPTExk3bp1+Pj40KBBA3bt2sUXX3zB5cuX2bhxIxcvXqRZs2aMGTMmw9c4e/YsjRs3pnHjxsTHxzN16lQaN27MlClTABg6dCiDBg1ixIgReHp6EhERwaZNm1Rz/AGWLFmCm5sbHTt2pGPHjri5ubFo0aIc/AqEEML4KOLi4pRZN3trzJgxrFmzhri4OJo1a0afPn1o2bJlqlk3AMeOHaN169bExsZqPGBtkwtmhsdY8gTJ1RBpK0+1hn3Wrl1L9+7d6dWrV6YzfN577z2CgoJyG5sQQggtUav4X7lyBQsLiyzb2draEhAQkOOghBBCaJdaY/5OTk6cOXMm3WPnzp3DxsZGI0EJIYTQLrWK/7/n1f9XcnJymrF/IYQQ+ilbwz4pKSmqwp+SkpLmZq74+Hh+//13bG1tNR+hEEIIjcuy+E+bNo0ZM2YAb9fP8fb2zrBtnz59NBeZECLXZGN2kZEsi/+HH34IvB3ymTFjBj169KBkyZKp2lhaWlKpUiVatWqlnSiFEDnybu9YE4VCtXes3PAkIJvF/90HgEKhoGfPnmmKvxBCP+nj3rFCP6g11XPUqFHaikMIoQU2xaxUPX9dLWomQ0/6KcviP2TIEEaMGIGLiwtDhgzJtK1CoWD+/PkaC04IkTtjhvgzZcFqnsT9U3jzmgw96acsi/+hQ4dU++wePHgw0+mcMtVTCP2iD4uaydCTfsqy+F+4cEH13xcvXtRqMEIIw6MPQ08irRyt5y+EENkl6+nrpyx7/vfv31frBcuUKZPjYIQQhkcfhp5EWlkW//fff1+tsfyYmJhcBSSEEEL7siz+8+fPlwu5QghhYLIs/oGBgXkRhxBCiDyUqz18jdm7G1fuPozC0daaicM/lhtXhBD5htrFPzo6mg0bNnDr1i0SEhJSHTOmm7ze3bhy4cptYp+94PjZq8wY3ZdmDWphZmaq6/CEECJTahX/mzdv0qJFC5KTk3n58iW2trbExsaSnJyMtbU1RYsW1Vaceifm6XMSEhKJefr2hpW7f0fR9dMpONkXp2ubJgS29+K9cqV1HKUQQqRPrXn+3333HbVr1+bGjRsolUrWr19PREQE8+bNo1ChQvz666/ailPv2BSz4u/Ix2kej4iO5cdftlDX73NadB/FL+t38/T5Sx1EKETORD6OZeiEYHoMn8HQCcFEPY7TdUhCC9Qq/mfPnqVPnz5YWloCb5d5NjMzo0ePHvTr14/Ro0drJUh9NGaIP4521hQuWCDDNqcu3OCLiYuo5NWHfqPmsP/4+TQb4Qihb94NaSYmJqnW4hGGR61hn5cvX1K8eHFMTEwoWrQoT548UR2rVasWM2fO1HiA+srBzprflk9GqVRy/Ow1VoWGsXn3EV68SkjTNuF1Iut3HmL9zkOUdrKjW7umBPp5Ua6Mkw4iFyJzshaPcVCr51+2bFmioqIAcHV1ZcuWLapju3fvplixYpqNLh9QKBR8ULsKP00YwvWwZQRP+owPPdwybP8g4jGzft5ALd/BtO71Lb9u2ceLV/F5GLEQmbMpZkXKu21bZS0eg6VW8W/atCnh4eHA26WeQ0JCqFOnDvXr12fhwoVGf09A4UIF8G/nyfal33Nu5wK+HtiFMiXtM2x/9MwVPh0bRCXPPgz+7ieOnL6s2itZCF2RtXiMgyIuLi7b1eb169e8fv1aNavnt99+Y/Pmzbx69YrmzZvz8ccf5/u7gW/evImrq6vGXi8lJYVDpy4TEhrGtr3HiE9IzLS9S2lHAvw88W/nSZkSGX9waIKmc9VXxpInSK6GSFt5qlX8jYE2/6CePn9J6J6jhISGceLc9UzbKhQKmtSrTqCfF22a1aNgAUuNxyP/8xgeydXwaCtPtYZ9atSokeGa/leuXKFGjRoaCcpQFbMqTM+OLdi9ciqnQn/iiz4fUcLBJt22SqWS/ccv0G/0XCp59WHY98GcOn9dhoWEEBqhVvG/d+8eiYnpD1u8fv1a7eWfjZlruVKMG9qdS7sXsWHBt3TwboCFefqTr569eMXyDb/Tosdo6ncYyo/LNhMRLaunCiFyTu3lHTIa0z979qxRzvbJLVNTU5p/WJvmH9Ym9ulzNvx2mFWhYZy9/Ge67a/ffsC4uf9jwrwQmjesSaCfF62aemBpYZ7HkQtjIRuwG6Ysi39QUBDBwcHA28LfrVs3LCwsUrWJj48nNjaWjh07aidKI1G8mBX9uvnQr5sPl2/cZdXWMNZtP0h0zNM0bVNSUthz6A/2HPqD4sWK0Nm3MYF+XtSoUl4HkQtDJhuwG6Ysi7+LiwuNGzcGYPXq1dSqVQtbW9tUbSwtLalUqRI9e/bUTpRGqNp7zkz+qhfjh/Zgz+E/WBUaxu6DZ0hKSk7TNvbpC35etZOfV+3ErZILAe086eLbGDsb+SYmck9u+jJMWRZ/X19ffH19VT+PHDkSFxcXbcYk/sXc3Axfz7r4etYl+kkc63YeImRLGFdu3k23/aXrd/hm5i+Mm/M/vJu4E+jnRfOGtTDP4HqCEFmRDdgNU7Yv+CYmJrJz506uXLmizXhEJuxtrRnSoy1HNsxm/5qZ9PP3wbpokXTbvklKYvu+E/h/PpVqLfvz7azlXL11L48jFoZAbvoyTNnuDlpYWGBmZkaBAhkvZCbyhkKhoGbVCtSsWoFJX37Cb/tPEbIljH1Hz6W7cFzUkzjmr9zK/JVbqe1WkUA/Lzr6fKiDyEV+JBuwGya1pnr6+voSGhqqrVhEDlhamNO+ZQPWL/iWS7sXMX5Yd1xdSmXY/o9Lt/hy8s9U8urDN7ND2HfkLMnJaa8jCCEMm+moUaPGZ7dxUlISP//8MydOnCAxMZEnT55w9+7dVP/y+/WAmJiYNBe08wurIoWoX6sK/br50KxhLUxMTLh97xGJb5LStE1OTuH2/UjW7ThIyJYwYuKeU9rJDhtrwxvPzc/nVF2Sq+HRVp5qLe9QvHjx9F9EoUCpVKJQKIiJyd83HxnaLeOv4l+zPew4IVvCOXDiQpbt69eqTICfFx28G2JVuGAeRKh9+fmcqjvHPj/nqi5jyVUv1vY5fPhwlm0+/DB/jyUb8h/UvYdRrN66n1Wh4dz9OzLTtoUKWNKuxQcEtveioXtVTEzUGiHUK/n5nA6dEJxqpk0pR5tMx9/zc67qMpZctZWnWvP/8nthN3ZlSzrw9cAujOjfiaN/XCV45RbCj1/iVcLrNG1fJbxmzbb9rNm2H+dSjvi3a4p/O0+cSznoIHLjJXPshbbkaPJ3bGwsJ0+eJDY2luLFi1O3bt0Mh4SE/jExMeHDOtVwLGbBwqnDCf39KCFbwjn2R/rTeO/+Hcm04LVMC15LIw83Att70a75BxQqqPmVRkVqMsdeaIvaxX/SpEnMnz+fxMRE1QqTlpaWfPrpp3z77bcaD1Bol1XhgnRv34zu7Ztx+94jVoWGs3prOH9HPkm3/aFTlzh06hIjpiymg3dDAtt7UbdGpXy/j4O+GjPEnykLVvMk7p8xfyE0Qa3iv2DBAn744Qd69OhBly5dcHR0JDIyknXr1jF79mzs7OwYOHCgtmIVWla+bAm+/SyA0YO7cvDkRUK2hLNt33FeJ75J0/b5y3hWbtrLyk17qehckgA/T7q1bUpJR8OffZGXZI690Ba1Lvh6eHjQvHlzpk6dmubY6NGj2bt3L6dOndJogHnNWC4iQfZyjXv2kk27DhOyJYwzl25m2tbExASvD2oQ2N4Ln6YeFLC0yLR9TuRkhUk5p4bJWHLVi81c7t27h7e3d7rHvL29uXdPlg8wNNZFC9O7izf7Vk3n+OYf+fyT9jhmUGxTUlLYe+QsvUb8QOVmfflq8s+cvXxLoxvQvFthMjExSbXCpBBCfWoVfxsbmwzX9rl69So2NunvSiUMQ+UKZfh+eE8u71nMmp++oW2z+pibpT9yGPfsBUvW7sLTfyQNO37B/JVbiXoSl+sYZPaLEJqhVvFv06YNU6ZMYc2aNSQlvb1rNCkpiQ0bNjB16lTatm2rlSCFfjEzM6VVkzr8b85Iru1bwrSv+1C9crkM21+5dY9vZy2naot++H8+le1hJ3iTzl3H2WFTzIqU//8mIbNfhMg5tcb8nz9/TpcuXTh+/DimpqYUL16c2NhYkpOTqV+/PuvXr6dIkfRXmcwvjGUcETSf64VrfxGyJYz1Ow8Sk0WP3K54Ubq0aUKAnydu77lk+z2iHselmf0iY/7/kFwNj17c4QtvNxbfvXs3x44dU83zb9iwIS1atDCI6X7G8gcF2ss18c0bdh04Q8iWMPYe+YPk5LQrjf5bjSrlCWzvRefWjSiuhZ68nFPDZCy56k3xN3TG8gcFeZNrRHQM67YfJCQ0jOu3H2Ta1sLcjNaedQnw88Trg5qYmZlqJAY5p4bJWHLVi+UdhFCXk70Nn/dqz2ef+PHHpVuEbAljw65DPHv+Kk3bxDdJbNlzlC17jlLCwYaubZoQ6OeFa7mMl6gWQuRMlsXfzc1NrRe8dOlSjoMRhkuhUOBe3RX36q5MHvEJO8NPERIaRvix8+lOBX0UFcPcZZuZu2wzdWtUItDPi/beDShmVVgH0QtheLIs/n///TdWVlY0a9aMggUNY4lfoVsFC1jS0edDOvp8yIOIx6zZup9VW8O5fe9Ruu1Pnr/OyfPXGTVjKW2b1SfQz4tGdd3y9UqjQuhalsXf39+fbdu2sW/fPtq0aUO3bt1o3LixVoNKTk5m6tSprFu3jsjISBwdHenSpQujRo3C7P/nlSuVSqZNm8aKFSuIi4vD3d2dWbNmUaVKFa3GJjSrtJMdX/XvxJf9OnL87DVCQsPYsvsIL14lpGkbn5DIuh0HWbfjIGVK2uPf1pMAv6a4lHbSQeQiJ3dbC/2RZddpwYIF3Lhxg5kzZxIREUGHDh2oXr06kyZN4tatW1oJau7cuSxZsoTp06dz8uRJpk2bxuLFi5k9e7aqzY8//khQUBDTp08nLCwMe3t7OnTowPPnctNPfqRQKPigdhXmTxjCtbClLJj4GQ3rVMuw/f2H0cxYtI6arQfj2/s7VoWG8zKdDwyhPXK3df6Wre/NBQsWpGvXrmzatIlLly7Rt29fdu7cSd26dWnevLnG9/U9efIkrVq1wsfHB2dnZ1q3bo2Pjw9nzpwB3vb6g4ODGTZsGH5+flStWpXg4GBevHjBhg0bNBqLyHtFChUkwM+THcsmcm7nAkYO6ELpEnYZtj9y+jKDv/uJSl69+XRcEEfPXNHokhIifXK3df6W46meiYmJzJgxgzlz5uDj48Ovv/6qsaDmzJnD0qVL2bRpE++99x7Xrl2jY8eOfPHFF/Tt25c7d+5Qs2ZNwsLCqF27tup5Xbp0wcbGhoULF6b7ujdvZr4wmdBfKSkpnL50m23hpwk/fpHXiZnfIVzGyZY2nnVo3bQ2TjIUoRWTgzcSHfNMtY2rvU1RxgzqqOuwjE5Op4GqPdXz1KlTrFmzhs2bN5OQkED79u3p169fjt48I8OGDePFixfUq1cPU1NTkpKS+Oqrr+jbty8AkZFvtyC0t7dP9Tx7e3sePUr/oiFk75dkLHOHIf/lWqlSJQI7+vD0+Uu27D5KSGgYJ89fT7ft/YgnBK/ezcI1e6j3fkX6+rfB16suBQsY9gY0eXlOZ3wzUO27rTUpv/395pRO5/nfuXOHtWvXsm7dOv766y/q16/P+PHjad++PUWLFtV4UJs2bWLNmjUsWbKEypUrc/HiRUaNGkXZsmXp2bOnxt9P5C/FrArzcacWfNypBTf+esCq0HDWbNtPRHRsmrZKpZLj529y/PwciloVolOrRgT4eeJe3dUg7kjXJdlrIH/Lsvi3atWKkydPUr58ebp160aXLl1wdnbWalBjx47l008/pWPHt18hq1Wrxv3795kzZw49e/bE0dERgOjoaMqUKaN6XnR0NA4OssesMXmvXGnGD+vBt58GEH7sPCGhYewMP0liOgvHPXv+imXrd7Ns/W4qVyhDQDtPurZtgqOdbEGqr2RGkfZkWfxPnDiBlZUV9vb2hIWFERYWlmFbhULBzp07cx3Uq1evMDVNfWu/qakpKSlv14hxdnbG0dGR8PBw1Zh/QkICx44d4/vvv8/1+4v8x8zMlBaNatOiUW1i4p6z4bdDrAoN59yVP9Ntf+3P+4yds5IJ836lecPaBPh54tO0Dhbm5nkcucjMuxlFJgqFakaRfNvQjCyLf4MGDfL863GrVq2YO3cuzs7OVK5cmQsXLhAUFES3bt2Atx8ygwYNYvbs2bi6ulKxYkVmzZpF4cKF6dSpU57GKvSPjbUV/f1b09+/NZdu3GHB8k3sOXKBx7HP0rRNTk5h98HT7D54GhtrKzq3bkxgey/ez2SJakOjz71rmVGkPXq5sNvz58+ZPHky27dv5/Hjxzg6OtKxY0dGjhxJgQIFgH9u8lq+fHmqm7yqVq2aq/c2lotIYDy53rx5ExeXcuw5/AchW8LYc+gMSUnJmT6neuVyBLTzpItvY2yLa/66lrbk5JwOnRCs6l2nKJWUcrTRm971f2Mr6WDDj+PexmZMf7/5alXPlJQU/Pz8mDt3LhUqVNDGW2iFsfxBgfHk+t88o5/EsXbHQVZtCePKrcy3HjU3M6NVkzoEtveiecNaGltpVFtyck57DJ9B4r+mzlpYmPG/2SM1HVqOZLZ/g7H+/WqK1lb1VCqVHD58WO64FXrH3taaT3u2Y0iPtpy/evv/N6A5RNyzF2navklKYtu+42zbdxwHW+u3K42296JyhTLpvHL+ZFPMKlXvWp92R5MZRdojK2MJo6VQKKhZtQIzv+nHtX1L+GXmlzRvWCvDBeOinsTx04pQ6ncYSrOAr1m2bjdxz17mcdSaN2aIP6UcbbCwMKOkgw1jhvjrOiSRB2Q9fyGAApYWdPBuSAfvhjyMfMLa7QcI2RLGrbsP021/5tJNzly6yegZy2jjVY/A9l40qVc9zSy1/CC7vWt9vjAs1Cc9fyH+o6SjLV/0+YhTW39i98op9PyoOVaF01/O/HXiGzbuOsxHA7/n/VYDmfTTqgyXps7vZCE3wyI9fyEyoFAoqFezMvVqVmba133Ytu84IVvCOHjyYrrt/458wqzFG5i1eAMf1KpCQHsv2rdsgFXhggbRa87JtEtDyNtQSc9fiGwoVNCSrm2asHXJBM7/tpBRg7pStmTGd5MfO3uVz8YFUdmrD4O+/YnPxy/g78gn+brXbFPMipT/Xy01uxeG5duC/pLiL4SanEs5MGpQV87tXMC2pd/TrW1TCmWwYNzL+ARWbw1n98EzHDl9mVt3H/L6dWK+vFkpJxeG5SYt/aXWsE9iYiIWFhYZHo+IiMDJ6e2uSiYmJvj7+2Nra5u7CIXQUyYmJjTycKORhxszv+nH5t1HWB0azrGzV9NtH5/wmj/vPuTPuw8pYW/Duh0HaONVn0IF88dKozmZdqnP00iNnVo9/759+2a4SUZERARt27ZV/axQKFiwYEGqhdeEMFRWhQvS86Pm/LZiMme2zefLvh0p5Zhxx+dRdAz9R/9I5WZ9GDohmJPnrxvkBjQyjVR/qXWH73vvvUe7du2YNWtWqscjIyNp27Yt5ubmHDlyRONB5iVjuWsQjCdXXeWZnJzMgRMXCdkSxvawE7xOfJNp+/fKlSLAz5OubZpSwsEmR+9pLOcUjCdXbeWpVs9/7dq1rF27lunTp6sei4qKol27dpiYmLB161aNByhEfmVqaopXg5osnTGc62FL+WFMf9zdMv6f+MZffzN+7q9Ua9mfzoMnsWXP0Sw/MITIKbXG/GvVqsWKFSvo1q0bjo6OtG3blnbt2qFUKtm2bZuM7wuRAeuiRejTtRV9urbi6q17rAoNZ+32A0Q9iUvTNiUlhd8P/8Hvh/+geLEidGrdiEA/L2pUKS8b0AiNydHCbuvWrWPIkCGULFkSCwsLtm/frtpgJb8zlq+SYDy56mueb94ksffIWVaFhrPrwGneJGW+L3FVV2cC23vRpXUj7G3Tnyuvr7lqg7HkqrOF3e7cuZPmsbp16/LJJ5+wefNmgoODiY+PV7VzcXHRcIhCGCZzczN8mnrg09SDxzFPWb/zECGhYVy6fifd9ldu3mXMzF8YN2clLRu5E9jei5Yf1sbcXO7V1ARjuyEty55/8eLFM/yqqVQq0xyLiYnRXHQ6YCy9CTCeXPNbnuev3mZVaDjrdx4kJot58fY2xejSpjGBfl5UdXXOd7nmhqZz1dd9DXTW8w8KCtL4mwohMlajSnlqVCnP98N7suvAaVaFhvH74bOqbUz/LTrmKUErtxG0chs1q1agRQM3Bjs4UVzm06vN2G5Iy7L4BwQE5EUcQoj/sLQwx6/FB/i1+ICI6BjWbjtASGgYN/76O9325678ybkrf/LD0q2ULeXAt58G0MG7Qb5caVQXjO2GNNNRo0aNz27jx48f8/DhQ2xs0s5BvnXrFkqlkkKFCmkyvjwXExNjNLOWjCXXG3/eYdaSUFZtDefA8Qu4u7lSuFABXYelliKFC1K/VhX6dvOhxYe1MTU14fb9R+lOBVUCcc9esnXvcf63eR9PYp9R2skOG2vDKmaa/vt1d3Pl/NU/SXyThIOtNWOG+OvF34m2/j9Va7bPxx9/TPHixZk7d26aY8OHDycmJobly5drMr48J2OmhueT4dN4+TpZ78Zycys+4TXb951g1dZw9h+/kOUdwvVqViLQz4v23g0pWiR/d9LAeP5+9eImr+PHj+Pl5ZXuMU9PT06cOKGRoITQpKfPXxnkWG7BApZ09m3M5kXjuLBrITWrVqCApXmG7U+cu87nE4Kp5NWb/t/8yIETF9O9jiCMg1rFPy4ujmLFiqV7rGjRovl+po8wTMWsCqm9FHERe9SDAAAgAElEQVR+U6aEPevmj6HVhzVp4F6Vis4lM1xpND4hkXXbD+DXbxw1Ww9m6oI13HkQmccRC11Tq/iXLFmS06dPp3vs9OnTBnOjlzAsA/1bGsXiYg521owZ3Imdv0zi9Lb53Ni/jKCJn9KwTrUMn3PvYRTTF66jZutBtOkzltVbw3n5KiEPoxa6otbdIX5+fsyZMwc3Nze8vb1Vj+/evZu5c+fSu3dvjQcoRG7ZWlsZxBi/uooUKkignxeBfl78dT+CVVvDWb01nAePHqfb/vCpSxw+dYmRU5fQvmUDAvy8qF+rsiwpYaDUuuD76tUr2rdvr+rllyhRgkePHhEZGYmHhwebN2/O97N9jOUiEhhPrsaSJ2Sda0pKCgdPXmRVaDhb9x4n4XVipq9XwbkEAe086da2KaWc7DQdbq4Yy3nVVp5qr+3z5s0b1qxZw/79+1VTkDw9PenatStmZvn/NnNj+YMC48nVWPIE9XJ9+vwlm3cfIWRLGKcu3Mi0rYmJCZ713yewvRetPetSwDLjTZ3yirGcV70p/obOWP6gwHhyNZY8Iee5Xr/9gNVbw1mzbT8R0bGZti1mVZhOPh8S2N6LWtUq6mxYyFjOq15M9RRCGKZK5UszflgPLu3+mXVBY/Br8QEWGSwY9/T5S5au241XwNc0+GgYP60ITXdpaqHf1B6nCQsLY+nSpdy6dYuEhNSzAhQKBefOndNYcEKIvGVmZkrLRu60bOROTNxzNvx2iJAtYZy/ejvd9lf/vM93P6xg/Nz/0eLD2gS298K7sTsW5hnfbyD0g1o9/z179tCpUyfi4+O5ceMG7733HqVLl+bvv//GxMSEBg0aaCtOIUQes7G2or9/aw6sncXhDbMZ1L0NtsWLpts2OTmFXQdO0+OLGVRp3o/RM5Zx8fpfeRyxUIdaxX/mzJn07duX9evXAzBmzBh27NjB8ePHSU5OpkWLFloJUgihW27vuTB1ZG+u7l3Mr3O/xqepB6am6ZePJ7HPCP51O406f0njLl+yaNWOLJemFnlPreJ/48YNfHx8MDExQaFQkJycDEDFihUZNWoUM2fO1EqQQgj9YGFuThuveqyeN5qre5cw8cuPqVKhTIbtL1z7i6+nLaVysz58/OVMdh88TVJSch5GLDKiVvE3MTHB1NQUhUKBnZ0dDx48UB0rUaIEf/0lX/OEMBYOttZ89rEfRzfNJXz1DPp2bUUxq8Lptk18k0To78fo+ukU3Lz7M27OSq7ffpBuW5E31Cr+rq6u3Lt3D3i7mXtwcDARERE8fvyY+fPnU7ZsWa0EKYTQXwqFglrVKjJrTH+uhy3ll5lf0rxhLUxM0i8vEdGx/PjLFuq1/5zmgV/zy/rdPH3+Mo+jFmrN9uncuTM3bry9GWT06NH4+flRtWpVAExNTVmyZInmIxRC5BsFLC3o4N2QDt4NeRj5hDXb9hMSGsafdx+l2/70xZucvniT0TN+oW2zegT4edKk3vsZfnAIzcnVTV5///03+/bt49WrVzRt2pTKlStrMjadMJYbR8B4cjWWPCH3uWpjE3OlUsmJc9dYFRrO5t1HeP4yPtP2pZ3s6NauKYF+XpQr45Rhu2Mnz7Dmt5MGv+G6Xtzhe//+fZycnDBPZw5vUlISjx49okyZjC/+5AdSKAyPseQJuc9V25uYv3yVwLZ9xwnZEsahU5eybN/AvSoBfp60b9mAIoUKpjpmqJv0/Jde3OFbo0YNLly4kO6xS5cuUaNGDY0EJYTQDW1vYl64UAG6tW3KtqXfc25nMKMGdaVsSYcM2x89c4VPxwZRybMPg7/7iSOnL6t2LDPUTXryilpj/pltE/fmzRsZpxMin/nvME8BCwsSXr/Jk03MXUo7MmpQV0YO6Mzh05cJ2RLG1r3HiE9Iu9Loy/gEVoWGsyo0HJfSjgT4eWJubkqKUmk0G65rWpbFPy4ujri4f9btePjwYZrNhOPj41m9erVs5iJEPjMlaI1qmOdhVAw2xQpTytGGJ3H/jKNrm4mJCY3rVqdx3erM/KYfW/YcZVVoGMfPXku3/Z0HkUwJWoNCAU72Njg52FC1YlmD3aRHW7Is/gsXLmT69OkoFAoUCgUff/xxuu2USiWjR4/WeIBCCO357zDPq4REFk0ZprN4ihYpRM+PmtPzo+bcuvOQVaFhrNm2n4dRabeIVSrhUVQMj6Ji+PPOQ8zNTAn086LO++/JBjTZkGXx9/X1pWzZsiiVSj799FO++uorypUrl6qNpaUllSpVws3NTWuBCiE0z6aYVaoLvPo0dFLRpSRjh3ZnzKf+7D9+gZDQMHaEneR14ps0bZ+9eMXyDb+zfMPvVCpfmoB2nnRt2wQnexsdRJ4/qDXbZ9WqVbRq1QobG8P9hcrMEMNjLHmC+rlGPY5jyoLVqYZ59Hm6ZNyzF2zYeYiQ0DDOXv4z07YmJiY0b1iTQD8vWjX1wNIif640qhdTPWvUqMGvv/5K9erV0xy7cuUK/v7+nD9/XqMB5jUpFIbHWPIE48r1t32HOHL2T9ZuP0B0zNNM2xYvVoTOvo0J9POiRpXyeRShZujFVM979+6RmJj+np+vX7/m/v37GglKCCGyUrGsE5O++oQrvy9m9bzRtGlWDzMz03Tbxj59wc+rdtKk61d82Hk4C/63jcdZfGAYOrXnZmZ0IeXs2bMUK1Ys1wEJIYQ6zM3N8Gnqwa9zvuba3iVMGdGLau85Z9j+0vU7fDPzF6o070f3L6bz2/5TvHmTlIcR64csL/gGBQURHBwMvC383bp1w8Ii9ebN8fHxxMbG0rFjR+1EKYQQ2WBnU4zBPdoyqHsbLlz7i5DQMNbvOEjs0xdp2r5JSmL7vhNs33cCB1truvg2JrC9F1UqGscClVkWfxcXFxo3bgzA6tWrqVWrVpp5/u9m+/Ts2VM7UQohNEoba/joU0wKhYIaVcpTo0p5Jg7/mF37TxESGsbeI+dISUlJ0z7qSRzzV25l/sqt1HarSKCfFx19PsS6aJHcpqW31LrgO3jwYEaOHImLi4sWQ9ItY7pgZiy5GkuekP1ctb2GT06oG1NOzmtEdAxrtx0gJDSMG3/9nWlbSwtzfL3qEujnRdP672Nqmv71BG3Tiwu+CxYsyLDwHz58mCFDhmgiJiGElml7DZ+cyIuYnOxtGNq7Aye2zOP3/03lk04tKFqkULptXye+YdOuI3QcNJH3Ww1k4rwQ/rz7UOMx6UquFuO5ffs2kydP5v3336dt27Zs2bJFU3EJIbTIppgVKf+/Vpe+3NyVlzEpFAo8alRi7thBXA9byuKpw2ha//0MJ7T8HfmEH5ZsxL3tp7T6+BtWbtqb5dLU+k7t4v/06VOWL1+Ot7c3derU4YcffsDa2prZs2dz9epVbcQohNCwMUP8KeVog4WFGSUdbPRiXRxdxVSwgCWdfRuz5efxXNi1kG+GdMOldMbrlB0/e43Pxy+gkmdvBnzzIwdPXkz3OoK+y9aYf0pKCnv37mX16tXs2rWLhIQESpQoQZs2bViyZAnbtm2jYcOGeRGv1sn4sOExljxBctUUpVLJ0TNXCAkNI3TPMV7GJ2Ta3rmUI/7tmuLfzhPnUhkvUZ0T2sozy9k+Y8aMYcOGDURHR1OgQAHatGmDv78/TZs25dmzZyxevFjjQQkhDJ8+zjh6R6FQ0LBONRrWqcaM0X3ZsucoIVvCOfbHlXTb3/07kmnBa5kWvJZGHm4EtveiXfMPKFTQMo8jz74sh30WLFhAdHQ0LVq04NKlSyxevBgvLy9MTEy0unJeREQEAwcOpEKFCjg6OlKvXj0OHz6sOq5UKpk6dSqVK1fGyckJX19fGXYSIh95t5x0YmISD6NimLJgdbafG/k4lsnBG+kxfAZDJwQT9Tgu6yflUJFCBenevhm/LZ/EH9uD+Kp/J0o72WXY/tCpSwwcM49KXr35fPwCTpy7luleKLqSZfHv0aMHRYoUYc+ePdSpU4cRI0Zw5swZrQYVFxeHt7c3SqWSdevWceLECWbMmIG9vb2qzY8//khQUBDTp08nLCwMe3t7OnTowPPnup+1IITIWm5m90wJWkN0zLMcfXDkRvmyJfj20wDO/xbMlp/H0bl1IwpYWqTb9vnLeFZu2ot3z2/waPcZs5ds5FE6S1PrSpbDPvPmzWPGjBls376d1atX88svv7B06VIqVqxImzZttNL7nzdvHk5OTixatEj12L+nmCqVSoKDgxk2bBh+fn4ABAcH4+rqyoYNG+jVq5fGYxJCaFZulpOOefpcVXt0MVXV1NSUpvVr0LR+DeKevWTz7sOEbAnj9MWb6ba/dfch388LoZSTHV3bNMnTWDOi1k1e8HY4Zu3ataxZs4Zr197utOPh4UGfPn3w8/OjQIECuQ6qXr16NGvWjEePHnHo0CGcnJzo2bMn/fr1Q6FQcOfOHWrWrElYWBi1a9dWPa9Lly7Y2NiwcOHCdF/35s30T4wQIu89iXvOotV7iHv+imJWhRjo3xJb6+x9AEwO3kh0zDMUCgVKpRJ7m6KMGaT75WX+ehDJ9vAz7Nj/R5oPpMIFLdm19NsMvynkVE4vBqtd/P/t7NmzrFq1ik2bNhETE0PRokW5e/duTl9O5d12kIMHD6Z9+/ZcvHiRr7/+mnHjxtG/f39OnDiBt7c3Fy9epEyZMqrnDRkyhEePHrFp06Ycv7fMljA8xpInGE+uUY/j+HrKQpIw0buLxQBJScnsO3qWkC1h/Lb/NG+Skuj5UXPmjR+s9mvpbLZPZmrVqkWtWrWYMmUKu3btYs2aNamO379/nxIlSmBmpt7bpKSkUKtWLcaNGwe83Ufg9u3bLFmyhP79++cmZCGEAXCws+abQR319oPOzMwU78Z18G5ch5i456zfeZD6taroOqxUclX83zE3N6dt27a0bdtW9VhycjI1atQgLCyMmjVrqvV6jo6OVKpUKdVj7733Hg8ePFAdB4iOjk7V84+OjsbBQbNzbIUQeU+fp4Gqy8baigEBvroOI41cLe+QlZxOb6pfvz63bt1K9ditW7dUhd7Z2RlHR0fCw8NVxxMSEjh27Bj16tXLecBCCL2Qm2mgIns00vPXtMGDB9OyZUtmzZrFRx99xIULF/j555/57rvvgLc3YAwaNIjZs2fj6upKxYoVmTVrFoULF6ZTp046jl4I8W856cXr48JzhkYvi3/t2rUJCQnh+++/Z+bMmZQuXZpvvvmGvn37qtoMHTqU+Ph4RowYQVxcHO7u7mzatAkrK90vUCWEeCvycSxt+owl7tlLLM3NKF+2BFMWrM5y+ejcTAMV2aOXxR/A29sbb2/vDI8rFApGjx7N6NGj8zAqIYQ6pgSt4emzF6CEhNeJ3L73iGJFC2f5vDFD/JmyYDVP4v75tiA0S2+LvxBCdzR1wTXm6XMszM1JSHyDQqHg9ZukbPXiHeysdb65jKHT6gVfIUTe0eR6N5q64GpTzIoKziUpYGmOQgHWRQtLL15PSPEXwkBocr0bTV1wHTPEn3JlHKlVrSI+TeuyY+nEfDtl09CoNewzffp0evbsSYkSJdIci4iIYMWKFXz99dfA27Uvtm3bprc3YQhhaHK73s2/h3qu/XmfEvY2FCxgmasLrjJ8o7/U6vlPnz6dhw/T38MyIiKC6dOnp3rsww8/pHDhrC/uCCFyz6aYlerempwU7H8P9ZR0sCUiOkbnO31FPo5l6ITgPFm62dio1fPP7KatuLg4LC31d+MCIQzdmCH+ada7Uce/h3oKWFpQqUIZ/jd7ZIbt8+Iu3HcfSCYKhWooS75JaEaWxf/QoUMcPHhQ9fMvv/zCrl27UrVJSEhgz549VK5cWfMRCiGyJbfr3ag7tz4vCrPc7KU9WRb/I0eOMGvWLODt3PqQkJA0bSwsLKhUqVKaYR8hRP6h7tz63BTm7H5rkJu9tCfL4j9q1ChGjRoFQPHixdm7dy/u7u5aD0wIkbfUvTibm8Kc3W8NcrOX9mR7zD8xMZEBAwZodd9eIYR+Sq+nnpvCnN1vDTJbSHuyXfwtLCxYuXJlqmWbhRD5S04v0mbUU89pYc7sW4MhLeesz9Sa6lm9enWuXLmirViEEFqW0zt3NX3hdcwQf0o52qQ7lVSWc84bak31nDRpEn369KFMmTJ4e3vLEJAQ+cy7Ip7wOpE/7z7k0rW/GDohOMvetaYvvGY2nCMzfPKGWj3/Tz75hNjYWAICAnBycqJatWq4ubml+ieE0F82xaxIUSr58+5D4l8nYmpqkq3edWY9dW3FCDm7WU1kj1o9/8aNG0tvX4h87N1F2kvX/qKgpQWuLqWy1bvOywuvMsMnb6hV/IODg7UVhxAiD7wr4kMnBGtt/nxuL9jKDJ+8Iat6CmGEtDmMIxds84ccbeZy8eJFbt26RUJCQppj/v7yFU0IfafN3rVcsM0f1Cr+cXFxdO3alVOnTgH/LPT27+sAUvyFMG6yJEP+oNawz8SJE4mJiWHnzp0olUp+/fVXtm7dSufOnXFxcSEsLExbcQoh8om8nBkkck6tnv++ffv4+uuv8fDwAKBUqVLUrFmTRo0aMXz4cIKDg1m0aJFWAhVC5A9ywTZ/UKvnHxkZiYuLC6amphQoUIDnz/8Zy2vbti179uzReIBCCCE0T63i7+DgwNOnTwEoU6aMauwf4Pbt25qNTAghhNaoNexTv359Tp8+TatWrejatSvTp0/n3r17mJmZsXr1anx8fLQVpxBCCA1Sq/iPGjWKR48eAfD5558TExPD5s2befXqFT4+PsyYMUMrQQohhNAstYp/uXLlKFeuHADm5uZMnjyZyZMnayUwIYQQ2pOjm7wAXrx4QUxMDCVKlMDc3FyTMQkh9ISsrW+41F7eYdeuXTRu3JiyZctSs2ZNLl++DMBnn33G+vXrNR6gEEJ3ZKkGw6VW8d++fTsBAQHY2toyYcIE1R2+AM7OzqxeLX8YQhgSWarBcKlV/KdPn05gYCCbN29m0KDUN3FUqVKFq1evajQ4IYRuydr6hkut4n/jxg0++ugjgDTr+ltbWxMTE6O5yIQQOidLNRgutS74WllZ8eTJk3SP3bt3Dzs7O40EJYTQD7JUg+FSq+fv6enJ7NmziYuLUz2mUCh4/fo1ixcvpnnz5hoPUAghhOap1fP/9ttvadasGR4eHrRo0QKFQsHcuXO5fPkyz549IyQkRFtxCiGE0CC1ev7Ozs4cOHAAb29v9u/fj6mpKUePHqVOnTrs3buXEiVKaCtOIYQQGqT2TV6lSpVi/vz52ohFCCFEHsmy+E+fPj3bL6ZQKBg5cmSuAhJC6De569cwZFn8p02bluYxhUKR6gavfz8uxV8Iw/burl8ThUJ116/MCMp/siz+jx8/TvVzUlISTk5O7Nu3jxo1amgtMCGEfpK7fg1DlsXf1NQ03cdNTEwyPCaEMFyyQbthUHthNyGEcZO7fg1Djpd0FkIYJ7nr1zBIz18IIYxQlj3/O3fupPo5OTkZgEePHmFtnXZ6l4uLi0YCE0IIoT1ZFv9atWqlWcETIDAwMN32srKnEELovyyLf1BQUF7EIYQQIg9lWfwDAgLyIg4hhBB5SC74CiGEEZLiL4QQRkjm+Qsh9JIsIKdd0vMXQuildwvIJSYmqRaQE5ojxV8IoZdkATntkuIvhNBLNsWsSPn/peNlATnNyxfFf/bs2VhbWzNixAjVY0qlkqlTp1K5cmWcnJzw9fXl6tWrOoxSCKFJsoCcdun9Bd9Tp06xfPlyqlWrlurxH3/8kaCgIIKCgnB1dWXGjBl06NCBU6dOYWUlPQQh8jtZQE679Lrn//TpU/r168f8+fNTrSOkVCoJDg5m2LBh+Pn5UbVqVYKDg3nx4gUbNmzQYcRCCJE/KOLi4tLux6gnevXqRdmyZZkwYQK+vr5UrVqVmTNncufOHWrWrElYWBi1a9dWte/SpQs2NjYsXLgw3de7efNmXoUuhBB5wtXVNUfP09thnxUrVnD79m1+/vnnNMciIyMBsLe3T/W4vb09jx49yvA1s/NLunnzZo5/mfmNseRqLHmC5GqItJWnXhb/mzdv8v3337Nr1y7Mzc11HY4QQhgcvRzzP3nyJE+ePKF+/frY2tpia2vLkSNHWLJkCba2ttjY2AAQHR2d6nnR0dE4ODjoImQhhMhX9LLn7+vrS61atVI9NmTIECpUqMDw4cOpWLEijo6OhIeHq8b8ExISOHbsGN9//70uQhZCiHxFL4u/tbV1ml3CChUqRPHixalatSoAgwYNYvbs2bi6ulKxYkVmzZpF4cKF6dSpky5CFkKIfEUvi392DB06lPj4eEaMGEFcXBzu7u5s2rRJ5vgLkY/I4m26k2+K/44dO1L9rFAoGD16NKNHj9ZRREKI3Hq3eJuJQqFavE1u7MobennBVwhhHGTxNt2R4i+E0BlZvE13pPgLIXRGFm/TnXwz5i+EMDyyeJvuSM9fCCGMkBR/IYQwQlL8hRDCCEnxF0IIIyTFXwghjJAUfyGEMEJS/IUQwghJ8RdCCCMkxV8IIYyQFH8hhDBCUvyFEMIIydo+Qgitkc1a9Jf0/IUQWvNus5bExCTVZi1CP0jxF0JojWzWor+k+AshtEY2a9FfMuYvhNCaMUP8mbJgNU/i/hnz/y+5LqAbUvyFEFqTnc1aZBN33ZBhHyGETsl1Ad2Q4i+E0Cm5LqAbUvyFEDolm7jrhoz5CyF0SjZx1w3p+QshhBGS4i+EEEZIir8QQhghKf5CCGGEpPgLIYQRkuIvhBBGSIq/EEIYISn+QghhhBRxcXFKXQchhBAib0nPXwghjJAUfyGEMEJS/IUQwghJ8RdCCCMkxV8IIYyQQRf/JUuW8P777+Po6EiTJk04evRohm23bt1Khw4dqFChAqVLl6ZZs2bs3LkzVZuQkBCsra3T/EtISNB2KllSJ9fDhw/TsmVLypUrh5OTEx4eHvz0009p2oWGhlKvXj0cHByoV68e27Zt02YK2abpXPX1vKqT578dO3YMW1tbPvjggzTHDOGc/ltGuerrOQX1cj106FC6edy4cSNVu5ycV4Mt/ps2bWLUqFF8+eWXHDx4kLp169K5c2fu37+fbvsjR47QuHFj1q1bx8GDB2nRogXdu3dPc2IKFSrE9evXU/0rUKBAXqSUIXVzLVKkCAMGDGDnzp0cP36cr776iqlTp7JkyRJVm5MnT9K7d286d+7MoUOH6Ny5M5988gmnT5/Oq7TSpY1cQf/Oq7p5vhMXF8fAgQNp0qRJmmOGck7fySxX0L9zCjnP9fjx46nyqFChgupYTs+rwc7zb9asGdWqVWPevHmqx2rXro2fnx/jxo3L1mt4eXnxwQcfMHnyZOBtb2LkyJH8/fffWok5pzSRa/fu3bG0tGTp0qUA9OrVi9jYWLZs2aJq4+fnh52dnaqNLmgjV308rznNs3v37ri5uaFUKtm6dSvHjh1THTO0c5pZrvp4TkH9XA8dOkTbtm35888/sbW1Tfc1c3peDbLnn5iYyLlz5/Dy8kr1uJeXFydOnMj267x48QJra+tUj8XHx+Pm5kbVqlXp2rUr58+f10jMOaWJXM+fP8/Jkydp2LCh6rFTp06lec1mzZqp9fvTNG3lCvp1XnOa55IlS4iOjmbEiBHpHjekc5pVrqBf5xRy9/fbtGlTKlWqRLt27Th48GCqYzk9rwa5jeOTJ09ITk7G3t4+1eP29vZERUVl6zUWL17Mw4cP6dq1q+oxV1dX5s+fj5ubGy9evGDhwoW0atWKw4cPp/oalpdyk2vVqlV5/PgxSUlJfP311/Tu3Vt1LDIyMle/P23QVq76dl5zkufly5eZPn06v//+O6ampum2MZRzmp1c9e2cQs5ydXJyYvbs2dSuXZvExETWrl2Ln58fO3bsoEGDBkDOz6tBFv/cCg0NZezYsSxbtoyyZcuqHq9bty5169ZV/VyvXj0aNWrEokWLmDFjhi5CzZWdO3fy8uVLTp8+zbhx43B2dqZbt266DksrMss1v5/X169f07t3byZOnIiLi4uuw9Gq7Oaa38/pO66urri6uqp+rlu3Lvfu3WPevHmq4p9TBln8bW1tMTU1JTo6OtXj0dHRODg4ZPrc0NBQBg4cyMKFC/Hx8cm0rampKTVr1uT27du5jjmncpPru/95qlWrRlRUFNOmTVMVREdHxxy9pjZpK9f/0vV5VTfPiIgIrl+/zpAhQxgyZAgAKSkpKJVKbG1tWb9+PV5eXgZxTrOb63/p+pxC7v5+/83d3Z1Nmzapfs7peTXIMX8LCwtq1qxJeHh4qsfDw8OpV69ehs/bvHkzAwYMYMGCBfj5+WX5PkqlksuXL+Po6JjrmHMqp7n+V0pKComJiaqfPTw8cv2amqatXP9L1+dV3TxLlizJ0aNHOXTokOpf7969KV++PIcOHVL1gA3hnGY31//S9TkFzf39Xrx4MVUeOT2vBtnzBxgyZAgDBgzA3d2devXqsWzZMiIiIujVqxcAAwYMAGDRokUAbNy4kQEDBjBx4kQaNGhAZGQk8PaEFS9eHIBp06bh4eFBhQoVePbsGYsWLeLy5cvMnj1bBxn+Q91cFy1ahLOzs+rr5JEjR5g/fz59+vRRvebAgQNp3bo1c+bMwdfXl+3bt3Po0CF27dqVx9mlpo1c9fG8qpOnubk5VatWTfV8Ozs7LC0tUz1uCOc0u7nq4zkF9f9+FyxYQNmyZalSpQqJiYmsW7eOHTt2sHLlStVr5vS8Gmzx/+ijj4iJiWHmzJlERkZSpUoV1q1bpxrDf/DgQar2y5YtIykpidGjRzN69GjV4w0bNmTHjh0APH36lKFDhxIVFUXRokV5//332blzJ+7u7nmXWDrUzTU5OZnx48dz7949zMzMcHFxYdy4cakugr77w5w0aRJTpkyhXLlyLFu2jDp16uRpbv+ljVz18byqm2d2GMo5zQ59PKegfq5v3rxh7NixPFt5B4IAAAwlSURBVHz4kAIFCqjat2zZUtUmp+fVYOf5CyGEyJhBjvkLIYTInBR/IYQwQlL8hRDCCEnxF0IIIyTFXwghjJAUfyGEMEJS/IUQwghJ8Tdw/93RqGTJklSvXp3AwEA2b96MUqnebR7W1tZMmjQpy3a+vr74+vrmNOxcOX/+PHZ2dnz//ffpHm/Xrh1ubm48f/48jyPTrt9++42uXbvi6uqKnZ0dLi4u+Pj48NNPP/Hs2bM8jSUhIQFra2vmzJmj8dceP358quUNtPlehsxg7/AVqa1YsYKSJUvy+vVrHjx4wJ49e+jTpw/Lly9nzZo1FCxYUKPv98MPP2j09dRRo0YNhg0bxty5c+nQoQPVq1dXHVu5ciUHDx5k48aNWFlZ6SxGTRs2bBjLly+nQ4cOTJs2jRIlShAbG8uBAweYPn06Dx8+ZOrUqboOU+gRKf5Gonr16pQvX171c7du3fDz8+OTTz5h7NixzJw5U6PvV7lyZY2+nrpGjhzJ9u3b+eyzz9i3bx+mpqZERETw3XffERAQQLNmzXQanyYtW7aM5cuXM3v27FTLVsDbb2Bffvklx48f11F0Ql/JsI8R8/Pzo3Xr1qxcuZJXr15l+3lKpZJZs2ZRtWpVnJyc8PHx4cKFC6napDfs8/jxY7744guqVKmCg4MDHh4eLF++PFWbd8NUR44cISAggFKlSlGuXDm++uor4uPjsx2jhYUF8+fP58KFC8yfPx+Ar776ioIFCzJlypRUba9du0bXrl0pW7YsTk5OeHt7c+DAgVRtevfujYeHR5r3ad68OR07dlT9vHfvXqytrdm7dy/Dhg3DxcWFihUrMmjQoDRDL5GRkXzyySeUKlUKFxcXhg4dSmhoKNbW1pw6dSrbuc6ZMwd3d/c0hf8dR0fHNKvUZidneDuU5OXlhZOTE87OzvTo0YO//vorVZukpCTGjx+Pq6srJUqUoF27dty8eTPb8b8TERHB559/Tq1atXBycsLNzY0BAwaoFlkUmiXF38i1bNmS169fc/bs2Ww/Z82aNfz+++/MmDGDBQsWEB0djZ+fH7GxsRk+59mzZ7Rq1Yrff/+dUaNGsW7dOlq1asXw4cNVKxj+24ABAyhfvjz/+9//GDx4MCtWrGD48OFq5VanTh0GDx7MtGnTmDNnDtu3b+eHH35ItTXnvXv38Pb25tatW/zwww8sW7YMS0tLPvroo3SLYXZ9+eWXFCpUiF9++YUvvviCjRs3MnbsWNVxpVKJv78/Bw4cYOLEiSxZsoQ3b94wZswYtd7nr7/+4v79+3h7e2f7OdnNeceOHQQEBGBra8svv/zCjBkzOHfuHK1atUq1fvyECROYN28e3bt3JyQkhIYNGxIYGKhWHvB2p6siRYowYcIENm7cyLhx47hy5QqtW7fmzZs3ar+eyJwM+xi50qVLA6jVu4qPj2fTpk0ULlwYeLu5hLu7O0FBQXz77bfpPmfhwoXcv3+fo0ePqrbRa9q0KU+fPmX69On06dMHM7N//hxbtGihurDs5eWFQqFgypQpfPnll1SsWDHbsY4ZM4bffvuNCRMm0LFjxzTfRn766Sfi4+PZsmULZcqUUb23u7s7kydPpkmTJtl+r3/z9PRUfcPw9PTk2rVrbNy4kblz5wJve9R//PEHq1atonXr1sDbbxEdOnRQaxXLdxuUvzuP7yiVSpKTk1U/KxQK1ZaH2c150qRJVKpUibVr12Ji8rafWLt2berVq0dwcDBjx47l8ePHLF68mP79+6s2IPfy8kKpVDJt2jS1fmfVqlVL9a0sKSmJ2rVr4+7uzv79+2nRooVarycyJz1/I/duto9Cocj2c1q0aKEq/ADOzs54eHhkOlSxb98+3N3dcXZ2JikpSfWvWbNmxMTEcO3atVTt27dvn+rnjh07kpKSwpkzZ7IdJ0DBggX57LPPANLd7PvIkSN88MEHqiIIYG5uzkcffcSZM2dISEhQ6/3e+feSu/B2D+Hnz58TFxcHwOnTp7G0tEyzW1x2NhHKjsOHD2NnZ6f69+/lfbOTc2xsLFevXqVjx46qwg9vtxWsXbs2R44cAeDChQskJCTQoUOHVO//76Gw7FIqlSxcuJAGDRpQqlQp7OzsVEsw52QYSWROev5G7l3PUZ0djtLbHs7e3j5NAf+36Ohobt++jZ2dXbrHY2JiMn2PdxtUP3r0KNtxvmNubg68vQ7wX3Fxcbi5uaV53MHBgeTkZJ49e0aBAgXUfs93GwC9Y2lpCbzdgxbejm/b2dml+dD970bcWSlVqhSQdh34f+8YNXHixFTj9NnJ+cWLF0D6fxcODg7cunVLlce7x3KTB7z9RjJu3DiGDh1KkyZNKFasGPHx8fj6+qp+b0JzpPgbud27d1OgQAFq1qyZ7edERUWleSw6OpoSJUpk+BwbGxvs7e0zHAr471BOVFQUVapUSfX6QKbvkRPW1tbp5vN/7d1LSFRfHMDxr5OhM2RD6WIWqQk1oAtlwtr0QoVCTMRWGaGIhOEwWAunhT0kibJcqBU+wBFfFcIwujId3AjqQlTERWQUWIIgKriY0lHpvxi8eH2MM+XzP78PzOLeOTP3HO7l3JnfOb97pqenOXLkCMePHwc8nfdmSz/Ozc2h1+v9Pq7BYGBmZoY/f/6obgDr12LdTkxMDJGRkXR1dWG1WpX9YWFhmEwmANUYx+r2dm1evWFuVW715mYwGJR9MTExf90O8Kymd+3aNUpKSpR9X7588ft7hG8k7BPAOjo66OzsJDc3F51O5/PnnE4nLpdL2Z6YmGBwcHDT2TCrUlJSGB8f59SpU5hMpg2v9XPu29vbVdt2ux2NRrPjq05dvHiRgYEB1T+K5eVlHA4HiYmJyq/+yMhIpqamlLANeDqmiYmJvzpuYmIii4uLdHZ2qvavb7cvCgsLGRoaoqGhwafyvrT5xIkTxMXFbUgE/PbtGyMjI1y6dAmA+Ph4QkNDcTgcqmPY7Xa/2/H792/VuA94Zn+J3SG//APE2NgYs7OzuN1uJicn6erqor29naSkJGWgzldarZabN29isVhwu928ePGCsLAwzGbzlp8pKCjA4XCQmppKQUEBZ86c4devX3z9+pX+/n4+fPigKu90Onn8+DHJyckMDQ1RVlbGrVu3lMHinWKxWGhrayMjI4OHDx+i0+mora1lcnKSqqoqpVxmZibl5eXk5+eTn5/P9PQ0FRUVhIeH/9VxU1NTMZlMmM1mnjx5QlRUFHa7XQmnrI2zbycvL4/R0VEePHhAb28v6enpGAwGXC4XY2Nj9PX1qcIyvra5uLiYO3fukJWVRW5uLvPz8zx//pyIiAju3bsHeNbPvXv3Lu/evUOr1XLlyhUGBwc3nE9fpKSkUFdXR2VlJQkJCfT09ChLqIqdJ51/gMjJyQEgNDSUiIgIEhISsNlsZGRk+DXYC54EMZ1Oh9VqZXZ2lnPnzlFfX78hzr2WXq+nu7ubsrIyKioqmJqaQq/Xc/bsWdLT0zeUr62t5e3bt9hsNo4ePUpOTg6lpaX+NdoHUVFRfPr0iZKSEu7fv8/S0hLx8fHY7XbVTJ/Y2Fjq6+t5+fIlt2/fxmg08urVqy0fIbGdoKAgPn78iNVq5dGjRwQHB3Pjxg2KioooLCxUwk2+ftebN2+4fv06jY2NFBUVMT8/z7Fjx4iLi8NisSjn3582p6Wl8f79e16/fk12djYhISFcvXqVZ8+eqWL6T58+RaPR0NzcTE1NDefPn6e1tVX5d+Cr4uJiXC4XVVVVuN1uLl++TFtb276vMfx/JWv4igOltbUVs9nM8PCwKiM5UFgsFjo6Ovj+/fuGEIgQO0muLiH2SVNTEwsLCxiNRhYXF3E6nbS0tGC1WqXjF7tOrjABwMrKitcnfGo0Gr/i0LvpMNXVG61WS01NDT9+/MDtdnP69GlKS0uVsZP1iVrrrU3cOuiWl5e9vi83u70nYR8BeOK7q4k7m8nKyqK6unoPa7S1w1TXf2Gz2bw+0iIkJORQPPdmfHycCxcueC3jdDq9zhYTO086fwF4MihXE3s2c/LkSaKjo/ewRls7THX9FzMzM/z8+XPL94OCgvzKz9gvCwsLfP782WsZo9GoyhoXu086fyGECEAHPzAqhBBix0nnL4QQAUg6fyGECEDS+QshRAD6D8Dmdku3Skf5AAAAAElFTkSuQmCC\n", "text/plain": [ "